An Analogue of the Radon-nikodym Property for Non-locally Convex Quasi-banach Spaces

نویسنده

  • N. J. KALTON
چکیده

where g:(0, 1)-»X is an essentially bounded strongly measurable function. In this paper we examine analogues of the Radon-Nikodym Property for quasiBanach spaces. If 0 < p < 1, there are several possible ways of defining "differentiable" operators on Lp, but they inevitably lead to the conclusion that the only differentiable operator is zero. For example, a differentiable operator on L\ has the Dunford-Pettis property; operators on L\ with the Dunford-Pettis property map the unit ball of L«, to a compact set (cf (12)). However any operator on Lp (p < 1) with this property is zero (4). Thus we define a quasi-Banach space X to be p-trivial if J£(LP, X) = {0}. The concept of p-triviality is then hoped to be an analogue of the Radon-Nikodym property amongst locally p-convex quasi-Banach spaces. It turns out that this hope is fulfilled to some extent. Our main results in Sections 4 and 5 demonstrate an analogue of Edgar's theorem (2) and of the Phelps characterisation of the Radon-Nikodym Property ((1), (9)) to this setting. Precisely we show that a locally p-convex quasiBanach space is p-trivial if and only if every closed bounded p-convex set is the closed p-convex hull of its "strongly p-extreme points". Our analogue of Edgar's theorem is that if C is a bounded closed p-convex subset of a p-trivial quasi-Banach space then every x E C may be represented in the form

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Operators Whose Domain Is Locally Convex

Let F be an arbitrary topological vector space; we shall say that a subset S of F is quasi-convex if the set of continuous affine functionals on 5 separates the points of S. If X is a Banach space and T: X -* F is a continuous linear operator, then T is quasi-convex if T(U) is quasiconvex, where U is the unit ball of X. In the case when T is compact, T(U) is quasi-convex if and only if it is af...

متن کامل

Support functionals and their relation to the Radon-Nikodym property

In this paper, we examine the Radon-Nikodym property and its relation to the Bishop-Phelps theorem for complex Banach spaces. We also show that the Radon-Nikodym property implies the Bishop-Phelps property in the complex case. 1. Introduction. Let X be a complex Banach space and let C be a closed convex subset of X. The set of support points of C, written as supp C, is the collection of all poi...

متن کامل

Complex Geodesics on Convex Domains

Existence and uniqueness of complex geodesics joining two points of a convex bounded domain in a Banach space X are considered. Existence is proved for the unit ball of X under the assumption that X is 1-complemented in its double dual. Another existence result for taut domains is also proved. Uniqueness is proved for strictly convex bounded domains in spaces with the analytic Radon-Nikodym pro...

متن کامل

Differentiability of Lipschitz Maps from Metric Measure Spaces to Banach Spaces with the Radon Nikodym Property

In this paper we prove the differentiability of Lipschitz maps X → V , where X is a complete metric measure space satisfying a doubling condition and a Poincaré inequality, and V denotes a Banach space with the Radon Nikodym Property (RNP). The proof depends on a new characterization of the differentiable structure on such metric measure spaces, in terms of directional derivatives in the direct...

متن کامل

The near Radon-nikodym Property in Lebesgue-bochner Function Spaces

Let X be a Banach space and (Ω,Σ, λ) be a finite measure space, 1 ≤ p < ∞. It is shown that L(λ,X) has the Near Radon-Nikodym property if and only if X has it. Similarly if E is a Köthe function space that does not contain a copy of c0, then E(X) has the Near Radon-Nikodym property if and only if X does.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007